
Project ISPDA

Document File WiaPackageDependencies UG (EN) v1.2.doc

Version 1.2

Version Date 29-JUL-2016

Status FINAL

Author António Abreu

User Guide

ISPDA – Package Dependencies Analyzer

WiaPackageDependencies UG (EN) v1.2.doc, v1.2, 29-JUL-2016 (FINAL) page 1

1 INTRODUCTION

The Package Dependency Analyzer is a tool to analyze existing and missing dependency

declarations of Integration Server Packages.

If is intended to answer the following questions:

• If I install these packages at an Integration Server, which packages do I also have to have

installed?

• Which packages can I safely remove from the Integration Server because no other package

needs them?

Indirectly, the analysis of the package dependencies also uncover nodes (services, documents,

triggers, etc.) and DSPs that have references to nodes that do not exist in the server1.

1.1 Document Objectives

This document serves the objective of providing a User Guide to the tool, currently in version 1.7.

The tool is continuously under development2 and therefore it is certain that this document will change
in the future. The core analyzer is quite complete, but the graphical interfaces are a long way from

completion:

• There are no setting or analysis options available;

• The analysis report could be completely reworked.

1.2 Installation

Just install the WiaPackageDependencies IS package through the Integration Server package

management page.

Mind that additional packages need to be installed beforehand, in order:

• WiaRoot v1.2;

• WiaUtilities v1.12;

• WiaServiceProfiler, on any version, with a valid license key.

1.3 Access the analysis functionality

Access the package functionality through the package’s home page and following the link(s) defined

in there (see Figure 3, in page 3).

1
 This may be due to missing packages or packages that have been disabled. If the dependencies are declared, upon installation the

Integration Server will validate the dependency, issue error message and abort the installation. Package disabling and deleting is also

guarded by the dependency declarations.
2
 ... because we actively use it in our projects and customers.

ISPDA – Package Dependencies Analyzer

WiaPackageDependencies UG (EN) v1.2.doc, v1.2, 29-JUL-2016 (FINAL) page 2

Figure 1 - Go to the package home folder

A direct access link to the tool is made available in the Service Profiler menu if you have installed

v1.3.4 or above.

Figure 2 - The tool at Service Profiler’s menu

At the WiaPackageDependencies package homepage, there is a link to the analysis

functionality, and some useful information about the tool.

1.3.1 Generating Reports from Analysis at Remote Servers

The dependency analysis can only be performed at the server where the Package Dependencies
Analyzer is installed.

However, if the tool is installed at all required servers and these are accessible in the network the

analysis can be submitted and viewed from a single Integration Server.

As stated in the tools homepage, by defining Remotes Aliases with names suffixed with

_WIA_PKG_ANALYZER, the tool automatically enables remote analysis on those servers. If such

configuration exists, upon trying to access the functionality a server selection panel is presented first.

That panel lists all the defined remote aliases stripped of the name suffix and identified as Logical

Name. These names are as descriptive as the definitions you created as Remote Alias.

1.3.2 Do a Package Dependencies Analysis and interpret the results

A package dependency analysis starts by selecting the package(s) to analyze (see Figure 4, in page

3): these are the input packages, and will appear listed in the analysis report.

There are more possible options, but these are not currently settable through this user interface.

All packages are listed and are present at any time. The Regular Expression filters the list to

facilitate the selection. You can apply any number of Regular Expressions to select or unselect

package for the report before submitting. Before submitting your selection to generate the report, you

can check the complete list of packages you have selected by clicking the link Show all selected

packages.

ISPDA – Package Dependencies Analyzer

WiaPackageDependencies UG (EN) v1.2.doc, v1.2, 29-JUL-2016 (FINAL) page 3

Figure 3 - Go to the package analysis tool’s page

Set a Regular Expression to restrict the
visible the list of packages.
Empty means ALL packages.

Generate Analysis Report.
It May take a while.

Jump to bottom of
page, where the
submit buttons are.

Refresh the package list
based on the given Regular
Expression.

If checked, runtime-only
dependencies are also
revealed.

If checked, only report
packages that no other
package depends on.

Jump to top of page. Generate the Analysis Report as
a text file.
This is useful to compare reports
using commonly available text
comparison tools.

Select/unselect this
package in the list.

Select/unselect all
packages made
visible by the
Regular Expression.

For the dependency
evaluation, consider the
selected package a ‘not

installed’.

Show all packages that
are checked (clears the
Regular Expression).

Show ALL enabled
packages in the IS (clears
the Regular Expression).

Figure 4 - Give input for the package dependencies analysis

The report may, and most certainly will, present more packages than those provided as input. This is

because the internal analyzer option Show All Scanned Packages is currently being always used as

true. During the analysis process, the tool will simulate a package loading situation checking every

loaded package for references into other packages and loading them in turn, until all references are

resolved. This behavior in analysis allows its use in a practical case:

• Select only one (or a very strict list of) package(s).

The result is a list of all packages the selected package(s) required to completely fulfill its (their)
functionality.

ISPDA – Package Dependencies Analyzer

WiaPackageDependencies UG (EN) v1.2.doc, v1.2, 29-JUL-2016 (FINAL) page 4

If there are unresolved nodes, are they may be missing because:

1. Their package is not installed?

2. Their package is currently disabled?

3. Those nodes have simply not been deployed in the required package version3?

Because the report can be very extensive, when it is presented, only a list of headers identifying the

packages is visible. The package analysis details are collapsed, but the header already provides very

useful information (see Figure 5, below).

The Use runtime references option is checked by default. However, it may report more

dependencies and circular references than normal, because some of those dependencies and references

are either intentional or unavoidable. Checking or not this option is a matter of experimentation,

environment, personal experience, etc. For instance, in one occasion an entire Integration Server
was migrated to a newer version by installing the new platform from scratch and installing-and-
copying everything from the older server to the new. Everything was equal and worked. However,

every time the server was restarted there was one package that always reported an error on the startup

sequence. The problem was caused by the fact that:

• The package load order is not guaranteed as being the same on disparate servers;

• The startup sequence called a service that called a service that was at a package that was not yet

loaded.

Because the calling service was a Java Service, design time dependencies were not revealed.

But by checking the Use runtime references option this dependency was detected and reported;

and it was just a matter of declaring the missing dependency to guarantee the correct package load
order and make the error disappear.

3
 This may happen when a certain node is removed, but the references were not automatically updated or removed by the developer.

ISPDA – Package Dependencies Analyzer

WiaPackageDependencies UG (EN) v1.2.doc, v1.2, 29-JUL-2016 (FINAL) page 5

This package is completely defined, i.e., has
no missing declaration of dependencies, etc.

Package state summary:
• D;

Undeclared dependencies have been
found.

• C;
Circular references have been found.

• U.
References to unresolved/undefined
nodes have been found.

If any missing declaration has been selected for update,
this option will store it in the package.

The analysis is resubmitted and an updated report is
presented.

The saved changes cannot be undone though this tool.

Click on this header bar to show/hide the
details about this package.

Expand all package
analysis details.

Collapses all package
analysis details back

to only the headers.

Jumps to the bottom of
the page.

Reveals a report summary
only with counters and
pertinent lists.

Packages marked with are found to have
direct dependencies from an Adapter Package.

Jumps to the
top of the page.

Figure 5 - Package Dependencies Analysis report

ISPDA – Package Dependencies Analyzer

WiaPackageDependencies UG (EN) v1.2.doc, v1.2, 29-JUL-2016 (FINAL) page 6

Dependencies already declared in the
package, which cannot be changed, through
this tool.

In parentesis, the kind
of analysis that found
the dependency:

• (D) Design- time;
• (R) Runtime.

A list of unresolved nodes referenced within
the package, with its name and the name of
the node that tries to reference it.

Packages marked with an A, are Adapter
Packages.

A list of packages that depend on this one.

If listed as link, click it to jump to its details in
this the current report (causes all details to be
collapsed with exception to the target one).

Dependencies not declared in the package,
but determined during the analysis.
Checking it causes the declaration to be
created when the [save changes] button is
pressed.
The package version can also be edited.

Figure 6 - Report detail on declared dependencies, found dependencies and unresolved references

ISPDA – Package Dependencies Analyzer

WiaPackageDependencies UG (EN) v1.2.doc, v1.2, 29-JUL-2016 (FINAL) page 7

Found dependencies.
This particular one is disabled
because, if set, it causes a
circular reference.

Found Circular References.
In this case, it is only one.
The circular reference is also
identified with the kind of
analysis that determined it:
• (CRD) With design-time

references;
• (CRR) With runtime

references.

Figure 7 - Details on Circular References reporting

1.4 Known issues & Words of caution

There are some already known situations and they will be addressed in the next versions, either with

refined functionality or/and increased validation and protection:

• The package analysis does a package scanning that tries to simulate the Integration Server
loading sequence but that goes beyond it and that cannot guarantee the same loading sequence.

The packages are loaded in the order they are fed as input, i.e, alphabetical order. The issue is that
once a package is scanned it is thus considered loaded. To avoid infinite recursive loading, this

causes the detection of circular references to be non-reflexive, i.e., if a non-declared circular

reference in found from package A into E, it should be reported also a circular reference from E

into A, but it doesn’t. This is something that is being evaluated, because it may indicate that

saving some dependencies is OK and it isn’t… because a circular reference could be generated.

• Because of the issue above, be very careful when checking the creation of a declared dependency.

There may be some cases where the missing declaration is known, intentional and justified. E.g.,

the WiaPackageDependencies is missing a dependency on the WiaServiceProfiler

package, but it is intentional: the service code will use the Service Profile services, but only if

they are available… no error will be generated.

However, there may be some found dependencies that are quite straightforward, and that can
safely be set.

• Some of those straightforward dependencies will be, for instance, on the WmPublic and

WmRoot packages.

It is usually assumed as implicit by developers that these dependencies are not required to be
declared.

Ideally, all dependencies should be declared, because that rules and improves the startup and

shutdown times. However, this is not supported by the Integration Server on a very practical

ISPDA – Package Dependencies Analyzer

WiaPackageDependencies UG (EN) v1.2.doc, v1.2, 29-JUL-2016 (FINAL) page 8

manner4. So, only a subset of situations require having the dependencies to be declared as

mandatory:

� Always declare dependency from a package containing services that are being called by

services in this package’s startup or shutdown sequence;

Failing to do this may cause errors on Integration Server startup or shutdown.

� On packages that contain Adapter Connections, always declare dependency from the

adapter package;

This is clearly stated in any of the adapters User Guide and even in the ADK documentation.

This is intended to avoid instability at the Integration Server due to internal management of

objects by the adapter itself: if the dependency is not declared, when the adapter releases
global object, rebuilds pool, etc; the dependent packages should reload and they do not…

because they will be referencing object that are no longer valid, this may incur in a surge of

adapter and service errors… from which the server may recover or not (sometimes a server

restart is the only solution). Declaring the dependency is sometimes enough to eradicate all

these situations.

� On packages that contain Adapter Services, always declare dependency from the package

that contain the Adapter Connection;

� On packages that contain Adapter Listeners, always declare dependency from the package

that contain the Adapter Connection;

� Packages that publish a Publishable Document to Broker that is defined at another package

should declare a dependency from the package containing that document definition (just to

make sure it exists) because the Dispatcher requires its presence to validate the signature

against its representation at the broker.

However, the dependency is not actually mandatory. But you have to be sure it exists when a
publishing of that document happens, or a runtime error will occur.

4
 The problem is that by having a dependency declared automatically it means that when a package is reloaded all depending packages are

also reloaded and you can only disable or delete packages that others do not depend on. If all dependencies were declared it would mean

that the installation of a simple package patch could force the reload of (almost) all packages on the Integration Server and that could

take a very long time. The dependencies should be classifiable in a way that indicates whether a reload is implied or not... but they are a

one-size-fits-all.

ISPDA – Package Dependencies Analyzer

WiaPackageDependencies UG (EN) v1.2.doc, v1.2, 29-JUL-2016 (FINAL) APPENDIX A - page 9

APPENDIX A GLOSSARY

Item Definition

ADK Adapter Development Kit.

